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The long journey
of mathematics

Try this worksheet after you have completed Exercise 3l.

EXTENSION MATERIAL

The proof of the rational zero theorem and the proposition

Given a polynomial f(x) =ax"+a _x""'+..+ax +ax+a,a €7Z,a, #0and arational
number g, gcd (p, g) = 1 in its simplest form such that f Eg] =0, then p is a factor of a, and

gisafactorof a .

Proof

f (g] =a, [g) +a, [gj . a, (gj +a1§ + a,= 0. When we multiply the equation

by ¢ we obtainthe following: a p" + a_ p"'q +...+ ap’q"? + apg”" +aq" = 0.

Rearranging the equation we can get p (a p"' +a _p"?q+.. 4 apg> +aq™") = -agq"
Since the right-hand side has a factor p and gcd (p, g) = 1 then we can conclude that
pisafactor of a.

In a similar way, if we rearrange the same equation to obtain

anpr/ — _q(an,lpnﬂ +...+ a2p2qr1*3 + alpqrﬁZ + aoqnfl).
Again, since the right-hand side has a factor ¢ and gcd (p, ¢) = 1 then we can conclude
that ¢ is a factor of @ . QED

Proposition 2

Given a polynomial f(x) =ax"+a_x""'+.+ax’+ax+a,a € Z,a #0anda
rational number g, gcd(p, q) = 1 such that f (gj =0, then for any real value &, (p — qk)
is a factor of f'(k).

Proof

f[g} = an(gjn+ anfl(gjni +...+ aZ(gj + alg +a,=0

fRy=ak +a_k'+. . +ak+ak+a,

When we subtract these two equations we get

—f(k)=a, [(Sjﬂ—k"j . al[@ - k"*l] — [@‘ kZJ va2-k)

Multiplying the equation by the common denominator ¢”.

~fRg =ap'—qk)+a, g — gk +. .+ a,q? (P - ¢R) + a g (p - qk).

Since the terms on the right-hand side of the equation are grouped in such a way that
every term of the form (p"— ¥¢), r=1, 2, ..., n, has a factor (p — kg). Now since (p — gk)
and ¢ have no common factor, (p — gk) is a factor of f (k). QED

Solving systems of linear equations by the method of determinants

Now let’s take two linear equations in a general form.
ax+by=e
cx+dy=f

The solution can be written in a general form using direct formulas

_(ed—fb af—ec _
(x’y)_[adfhc7ad7bcj’ad be#0
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p
Gabriel Cramer (1704-1752)
developed this formula within
his work on determinants.

a bl
The form is called a
c d

determinant of the order 2.
It is a numerical value that is
calculated in the following

a b
way =ad — bc-
d

~
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It can be seen that all of the expressions in the formulae above can be written as determinants.
a b e b a e
c d f d c f

. D
those three determinants and then we use the formulae x = % , Y= 3% D=#0.

=D

X

= D, so to calculate the values of x and y we need to calculate

)

Cramer’s method can also be used for solving systems of three equations by
three unknowns.

ax+by+cz=d,
a,x+b,y+c,z=d,
ax+by+c,z=d,

. . D
Then the solutions can be written as x = %, y= fy’ z= % , D # 0 where
a b d b ¢ a d ¢ a b 4
D=la, b, ¢|,D,=|d, b ¢|,D,=|a, d, c|and D =|a, b, d,
a b dy by ¢ a dy ¢ a b d

To find the numerical value of those determinants we can use Sarrus’ rule.

Pierre Frederic Sarrus (1798-1861) developed a simple rule for expanding
determinants of the order 3.

a b ¢| a b ¢ a b

d e f=d>é/§é<e=aei+bfg+cdh—ceg—afh—bdz’
g h i| g¥ h¥uag 4

EXAMPLE 1

Solve the simultaneous equations from Example 43 by the method of determinants.
2x+4y+z=>5
3x—5y—z=4
xX+y—z=6

Answer

2 4 1| 241 2 4

D=3 -5 —1=3>§§<—5=10—4+3+5+2+12=28
1 1 -1 1157w

5 4 1| 5 4 1 5 4

D, =4 -5 —1:4>ié§<—5:25—24+4+30+5+16:56
6 1 -1 6 1¥ %146 1l

25 1] 2.5 1. 25
D,=3 4 —1=3>®<4=—8—5+18—4+12 +15 =28
1 6 -1 1¥6x %1541 46

2 4 5 2 4.5 2 4
D, =13 -5 4|=3 -5 =-60 +16 +15 +25 -8 72 =-84
1 1 6 1¥ I¥«6x41 4

So the solution is
56 28 -84 _

x=ﬁ—2, y—%—l, z—ﬁ——S

Determinants can be used with complex numbers too.
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Special cases of nonlinear simultaneous equations

If we take Viete’s formulae from section 3.4 we can solve some special cases of
simultaneous nonlinear equations.

EXAMPLE 2

Solve the simultaneous equations
x+y+z=4
xy+yz+xz=-7
1,1, 1_7

Answer

Let’s take a polynomial f (x) = x* + ax? + bx + ¢ whose zeroes are x, y and z.
x+ty+z=4=a=-4
xytyz+xz=-7T=b=-7

1,11 7 yz+xz+xy _ 7

4=t T
x y =z 10 xyz 10
=2t _7T 5210

- 10

fx)=x-4x>—-Tx+ 10

Possible zeroes: {*1, +2, £5, £10}
1 4 -7 10 Notice that due to the
symmetrical form of the
equations any of the values
X, y and z could be any of
the zeroes of the polynomial
f, therefore we have six
possible triplet solutions
satisfying the given system.

+ + +

il = 1 -3 -10

(1] [-3] 10 [o]
+

& ° ) 10

[o]

f@)=E@-1)(x-5) (x+2)

f@=0=>x=1,x=5x=-2

(x:yr Z) € {(1’ 57 _2)7 (17 _2, 5), (5’ 17 _2)7 (57 _2; 1); (_27 19 5)7 (_2’ 5, 1)}

Exercise 1

1 Use Viete’s formulae to solve the following simultaneous equations:

x+y+z:§

A Y+ yz+az=11

xyz=4

x+y+z=3
b xy+yz+xz=-13
11,113

x y z 15
¥ +y+27 =14
c xyz=—6
x+y+z=0

x+y+z+w=8
xy+xz+xw+yz+yw+zw=21
XYz 4+ xyw+ xzw + yzw =22

xyzw=8
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Chapter 3 extension worked solutions
Exercise 1

1 a Let’s take a polynomial f(x) = x* + ax® + bx + ¢ whose zeroes are x, y and z.

13 13
x+y+z:7=>a=—3

xy+yz+xz=11=5b=11
xyz=4=c=-4
Therefore the polynomial is f (x)=x> —% x2+11x — 4.

The polynomial with the same zeroes is f,(x) = 2x° — 13x* + 22x — 8.
Possible integer zeroes: {*1, 2, +4, +8}
2 13 22 -8

+ + +

2- 4 -18 8

(2] [e][4][o]
+ +

4. 8 -4

[o]
S@=E-2) (-4 @x-1)

fxX)=0=>x=2x,=4,x,=

(x, 9, 2) {G 2, 4), G 4, 2), (2, L 4], (2, 4, %),(4, L 2), (4, 2%)}

b Let’s take a polynomial f(x) = x> + ax? + bx + ¢ whose zeroes are x, y and z.

N | —

x+y+z=3=a=-3
xy+yz+az=-13=>0b=-13
1+1+1_13 :>yz+xz+xyzg

x oy z 15 xyz 15
:>i=§:> c=15
- 15

fx)=x3-3x2-13x+ 15
Possible zeroes: {1, £3, £5, £15}

1 -3 -13 15
+ + +
1- 1 -2 -15
[o]
+ +
5 5 15
[1][3] ]

SO =E-1)x-5) (x+3)
f@)=0=>x=1,x=5x=-3
x,,2 € {Q1,5,-3),(1,-3,5),(5,1,-3),(5,-3, 1), (-3, 1, 5), (-3, 5, 1)}
c Let’s take a polynomial f(x) = x* + ax? + bx + ¢ whose zeroes are x, y and z.
x+y+z=0=a=0
xyz=-6=>c=6
P+yY+214=>(+y+2? 2y +xz+y2)=14
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= (-al-2b=14=0-2b=14=b=-7
F)=2-Tx+6

Possible zeroes: {1, +2, +3, £6}

1 0 -7 6
+ + +
1 1 1 -6
[1] 2] [¢] [o]
+ +
2 2 6
[1][3][¢]

f@=E-1)E-2)(x+3)
f@)=0=>x=1,x,=2,x,=-3
x 32 €{(,2,-3),(,-3,2),(2,1,-3),(2,-3,1), (-3, 1, 2), (-3, 2, )}
d Let’s take a polynomial f(x) = x* + ax’ + bx* + cx + d whose zeroes are x, y, z and w.
x+y+tztw=8=a=-8
xy+txztaxw+yz+yw+zw=21=5b=21
xyz + xyw + xzw + yzw = 22 = ¢ = -22
xyzw =8 =>d =8
fl)=x-8x+21x*-22x+ 8

Possible zeroes: {+1, +2, +4, £8}

1 -8 21 -22 8
+ + + +
1- 1 -7 14 -8
[o]
+ + +
1- 1 -6 8
[o]
+ +
2 2 -8
(1] [-4] [9]

SO =E-17(x-2)(x-4)
f@=0=>x=1,x,=1,x=2,x=4

xy,zw) e, 1,2,4,(1,1,4,2),1,2,1,4),(1,2,4,1),1,4,1,2),(1,4,2, 1),
2,1,1,4,2,1,41),2,41,1)41,1,2),4,1,2,1),(4,2,1, 1)}

Bl

PolYRools(x3-1—;-x2+ 11'1“4,.1') {é,lfi}

polyRooG(;r3—3-x2—13-x+15,x) {'3*1'5}

polyRoots(xS—? ‘x+6,x) { -3,1, 2}
poiyRoos(x"—E-x3+21-x2—22-x+s,x:l
{1124}
| o
4/99
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