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EXTENSION MATERIAL

The long journey 
of mathematics3

Try this worksheet after you have completed Exercise 3I.

The proof of the rational zero theorem and the proposition
Given a polynomial f  (x ) = a

n
xn + a

n−1
xn−1 +...+a

2
x2 + a

1
x + a

0
, a

i
  , a

n
  0 and a rational 

number 
p

q
, gcd (p, q) = 1 in its simplest form such that 0

p

q
f , then p is a factor of  a

0
 and 

q is a factor of  a
n
.

Proof
1 2

1 2 1 0... 0
n n

n n

p p p p p
a a

q q q q q
f a a a . When we multiply the equation 

by qn we obtain the following: a
n
pn + a

n−1
pn−1q +...+ a

2
p2qn−2 + a

1
pqn−1 +a

0
qn = 0.

Rearranging the equation we can get p (a
n
pn−1 + a

n−1
pn−2q +...+a

2
pqn−2 + a

1
qn−1) = a

0
qn. 

Since the right-hand side has a factor p and gcd (p, q) = 1 then we can conclude that 

p is a factor of  a
0
.

In a similar way, if  we rearrange the same equation to obtain 

a
n
pn = −q(a

n−1
pn−1 +...+ a

2
p2qn−3 + a

1
pqn−2 + a

0
qn−1). 

Again, since the right-hand side has a factor q and gcd (p, q) = 1 then we can conclude 

that q is a factor of  a
n
. QED

Proposition 2
Given a polynomial f  (x) = a

n
xn + a

n−1
xn−1 +...+a

2
x2 + a

1
x + a

0
, a

i
 , a

n
 ≠ 0 and a 

rational number 
p

q
, gcd(p, q) = 1 such that 0

p

q
f , then for any real value k, (p  qk) 

is a factor of  f  (k).

Proof
1 2

1 2 1 0... 0
n n

n n

p p p p p

q q q q q
f a a a a a

 f  (k) = a
n
kn + a

n−1
kn−1 + ... + a

2
k2 + a

1
k + a

0

When we subtract these two equations we get 
1 2

1 2
1 2 1... .

n n

nn
n n

p p p p

q q q q
f k a k a k a k a k

Multiplying the equation by the common denominator qn. 

f  (k)qn = a
n
(pn  qnkn) + a

n–1
q(pn−1  qn−1kn−1) +...+ a

2
qn−2 (p2 – q2k2) + a

1
qn−1(p  qk).

Since the terms on the right-hand side of  the equation are grouped in such a way that 

every term of  the form (pr  krqr), r = 1, 2, ..., n, has a factor (p – kq). Now since (p  qk) 

and q have no common factor, (p  qk) is a factor of  f  (k). QED

Solving systems of linear equations by the method of determinants

Now let’s take two linear equations in a general form.

ax by e

cx dy f

+ =
+ =

⎧
⎨
⎩
The solution can be written in a general form using direct formulas 

(x, y) = , ,
ed fb af ec

ad bc ad bc
 ad – bc  0

Gabriel Cramer (1704–1752) 

developed this formula within 

his work on determinants.

The form 
a b

c d
 is called a 

determinant of the order 2. 

It is a numerical value that is 

calculated in the following 

way 
a b

c d
ad bc= - .
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It can be seen that all of  the expressions in the formulae above can be written as determinants.

a b

c d
D

e b

f d
D

a e

c f
Dx y= = =, , so to calculate the values of  x and y we need to calculate 

those three determinants and then we use the formulae x y D
D

D

D

D
x y= = ≠, , 0.

Cramer’s method can also be used for solving systems of  three equations by 

three unknowns.

a x b y c z d

a x b y c z d

a x b y c z d

1 1 1 1

2 2 2 2

3 3 3 3

+ + =
+ + =
+ + =

⎧
⎨
⎪

⎩⎪

Then the solutions can be written as x y z D
D

D

D

D

D

D
x y z= = = ≠, , , 0 where

D

a b c

a b c

a b c

D

d b c

d b c

d b c

D

a d c

a d cx y= = =
1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2, ,

aa d c

D

a b d

a b d

a b d3 3 3

1 1 1

2 2 2

3 3 3

and =

To fi nd the numerical value of  those determinants we can use Sarrus’ rule.

Pierre Frederic Sarrus (1798–1861) developed a simple rule for expanding 

determinants of  the order 3.

a b c

d e f

g h i

a b c a b

d e f d e

g h i g h

aei bfg cdh ceg afh bdi= = + + − − −

EXAMPLE 1

Solve the simultaneous equations from Example 43 by the method of  determinants.

2 4 5

3 5 4

6

x y z

x y z

x y z

+ + =
− − =
+ − =

⎧
⎨
⎪

⎩⎪

Answer

D = − −
−

= − − −
−

= − + + + + =
2 4 1

3 5 1

1 1 1

2 4 1 2 4

3 5 1 3 5

1 1 1 1 1

10 4 3 5 2 12 28

Dx = − −
−

= − − −
−

= − + + + + =
5 4 1

4 5 1

6 1 1

5 4 1 5 4

4 5 1 4 5

6 1 1 6 1

25 24 4 30 5 16 56

Dy = −
−

= −
−

= − − + − + + =
2 5 1

3 4 1

1 6 1

2 5 1 2 5

3 4 1 3 4

1 6 1 1 6

8 5 18 4 12 15 28

Dz = − = − − = − + + + − − = −
2 4 5

3 5 4

1 1 6

2 4 5 2 4

3 5 4 3 5

1 1 6 1 1

60 16 15 25 8 72 84

So the solution is

x y z= = = = = = −−56

28

28

28

84

28
2 1 3, ,

Determinants can be used with complex numbers too.
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Special cases of nonlinear simultaneous equations
If  we take Viète’s formulae from section 3.4 we can solve some special cases of  

simultaneous nonlinear equations.

EXAMPLE 2

Solve the simultaneous equations

      x + y + z = 4

xy + yz + xz = –7

     1 1 1 7

10x y z
+ + =

Answer

Let’s take a polynomial f  (x) = x3 + ax2 + bx + c whose zeroes are x, y and z.

x + y + z = 4  a = −4

xy + yz + xz = –7  b = –7
1 1 1 7

10

7

10x y z

yz xz xy

xyz
+ + = ⇒ =+ +

⇒ ⇒ =
−

=b

c
c

7

10
10

f  (x) = x3 – 4x2 – 7x + 10

Possible zeroes: {±1, ±2, ±5, ±10}

1

11 •

5 •

–10

+ + +

+ +

–4 –7 10

1 –3

–3

–10

1 2 0

0

5 10

f  (x) = (x − 1) (x − 5) (x + 2)

f  (x) = 0  x
1
 = 1, x

2
 = 5, x

3
 = −2

(x, y, z)  {(1, 5, –2), (1, –2, 5), (5, 1, –2), (5, –2, 1), (–2, 1, 5), (–2, 5, 1)}

Exercise 1
1 Use Viète’s formulae to solve the following simultaneous equations:

 a 
x y z

xy yz xz

xyz

+ + =

+ + =
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

13

2

11

4

 b 

x y z

xy yz xz

x y z

+ + =
+ + = −

+ + =

⎧

⎨
⎪⎪

⎩
⎪
⎪

3

13

1 1 1 13

15

 c 

x y z

xyz

x y z

2 2 2 14

6

0

+ + =
= −

+ + =

⎧

⎨
⎪

⎩
⎪

 d 

x y z w

xy xz xw yz yw zw

xyz xyw xzw yzw

xyzw

+ + + =
+ + + + + =

+ + + =
=

⎧

⎨
⎪⎪

⎩

8

21

22

8
⎪⎪
⎪

Notice that due to the 

symmetrical form of the 

equations any of the values 

x, y and z could be any of 

the zeroes of the polynomial 

f, therefore we have six 

possible triplet solutions 

satisfying the given system.
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Chapter 3 extension worked solutions
Exercise 1
1 a Let’s take a polynomial f  (x) = x3 + ax2 + bx + c whose zeroes are x, y and z.

  

x y z a

xy yz xz b

xyz c

+ + = ⇒ = −
+ + = ⇒ =

= ⇒ = −

⎧

⎨
⎪⎪

⎩
⎪
⎪

13

2

13

2

11 11

4 4

  Therefore the polynomial is f x x x x( )= − + −3 213

2
11 4.

  The polynomial with the same zeroes is f
2 
(x) = 2x3 – 13x2 + 22x – 8.

  Possible integer zeroes: {±1, ±2, ±4, ±8}

  2

42 •

4 •

8

+ + +

+ +

–13 22 –8

2 –9

–18

4

2 –1 0

0

8 –4

  f
2 
(x) = (x – 2) (x – 4) (2x – 1)

  1 2 3

1

2
( ) 0 2, 4,f x x x x

  x y z, , , , , , , , , ,, , ,( ) ∈ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠

1

2

1

2

1

2

1

2
2 4 4 2 2 4 2 4 ⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

, , ,, , ,4 2 4 2
1

2

1

2

 b Let’s take a polynomial f  (x) = x 3 + ax 2 + bx + c  whose zeroes are x, y and z.

 x + y + z = 3  a = –3

  xy + yz + xz = –13  b = –13

  
1 1 1 13

15

13

15x y z

yz xz xy

xyz
+ + = ⇒ =+ +

  ⇒ = ⇒ =
−
b

c
c

13

15
15

  f  (x) = x 3 – 3x 2 –13x + 15

  Possible zeroes: {±1, ±3, ±5, ±15}

  1

11 •

5 •

–15

+ + +

+ +

–3 –13 15

1 –2

–2

–15

1 3 0

0

5 15

  f  (x) = (x – 1) (x – 5) (x + 3)

  f  (x) = 0  x
1
 = 1, x

2
 = 5, x

3
 = −3

  (x, y, z) {(1, 5, –3), (1, –3, 5), (5, 1, –3), (5, –3, 1), (–3, 1, 5), (–3, 5, 1)}

 c Let’s take a polynomial f  (x) = x3 + ax2 + bx + c whose zeroes are x, y and z.

  x + y + z = 0  a = 0

  xyz = –6  c = 6

  x2 + y2 + z2 14  (x + y + z)2 –2(xy + xz + yz) = 14
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  (–a)2 – 2b = 14  0 –2b = 14 b = –7

  f  (x) = x3 – 7x + 6

  Possible zeroes: {±1, ±2, ±3, ±6}

  1

11 •

2 •

–6

+ + +

+ +

0 –7 6

1 1

1

–6

1 3 0

0

2 6

  f  (x) = (x – 1) (x – 2) (x + 3)

  f  (x) = 0  x
1
 = 1, x

2
 = 2, x

3
 = –3

  (x, y, z)  {(1, 2, –3), (1, –3, 2), (2, 1, –3), (2, –3, 1), (–3, 1, 2), (–3, 2, 1)}

 d Let’s take a polynomial f  (x) = x 4 + ax3 + bx2 + cx + d  whose zeroes are x, y, z and w.

  x + y + z + w = 8  a = −8

  xy + xz + xw + yz + yw +zw = 21  b = 21

  xyz + xyw + xzw + yzw = 22  c = –22

  xyzw = 8  d = 8

  f  (x) = x4 – 8x3 + 21x2 – 22x + 8

  Possible zeroes: {±1, ±2, ±4, ±8}

  

11 •

1 •

2 •

14

+ + +

–8

+

+ +

1 –7

–7

14

1 –6 8 0

–8 0

1 –8 21 –22 8

1 –6

+

8

+ +

1 –4 0

2 –8

  f  (x) = (x – 1)2 (x – 2) (x – 4)

  f  (x) = 0  x
1
 = 1, x

2
 = 1, x

3
 = 2, x

4
 = 4

   (x, y, z, w)  {(1, 1, 2, 4), (1, 1, 4, 2), (1, 2, 1, 4), (1, 2, 4, 1), (1, 4, 1, 2), (1, 4, 2, 1), 

(2, 1, 1, 4), (2, 1, 4, 1), (2, 4, 1, 1) (4, 1, 1, 2), (4, 1, 2, 1), (4, 2, 1, 1)}

  




